
Prometheus

Prometheus
Best Practices and Beastly Pitfalls

Julius Volz, August 17, 2017

Prometheus

Prometheus

Areas

● Instrumentation
● Alerting
● Querying

Prometheus

Instrumentation

Prometheus

What to Instrument

● Every component (including libraries)

● Spread metrics liberally (like log lines)

● "USE Method" (for resources like queues, CPUs, disks...)

Utilization, Saturation, Errors

http://www.brendangregg.com/usemethod.html

● "RED Method" (for things like endpoints)

Request rate, Error rate, Duration (distribution)

https://www.slideshare.net/weaveworks/monitoring-microservices

http://www.brendangregg.com/usemethod.html
https://www.slideshare.net/weaveworks/monitoring-microservices

Prometheus

Metric and Label Naming

● No enforced server-side typing and units
● BUT! Conventions:

○ Unit suffixes
○ Base units (_seconds vs. _milliseconds)
○ _total counter suffixes
○ either sum() or avg() over metric should make sense
○ See https://prometheus.io/docs/practices/naming/

https://prometheus.io/docs/practices/naming/

Prometheus

Label Cardinality

● Every unique label set: one series
● Unbounded label values will blow up Prometheus:

○ public IP addresses
○ user IDs
○ SoundCloud track IDs (*ehem*)

Prometheus

Label Cardinality

● Keep label values well-bounded
● Cardinalities are multiplicative
● What ultimately matters:

○ Ingestion: total of a couple million series
○ Queries: limit to 100s or 1000s of series

● Choose metrics, labels, and #targets accordingly

Prometheus

Errors, Successes, and Totals

Consider two counters:

● failures_total
● successes_total

What do you actually want to do with them?
Often: error rate ratios!

Now complicated:

 rate(failures_total[5m])
/
 (rate(successes_total[5m]) + rate(failures_total[5m]))

Prometheus

Errors, Successes, and Totals

⇨ Track failures and total requests, not failures and successes.

● failures_total
● requests_total

Ratios are now simpler:

 rate(failures_total[5m]) / rate(requests_total[5m])

Prometheus

Missing Series

Consider a labeled metric:

ops_total{optype=”<type>”}

Series for a given "type" will only appear
once something happens for it.

Prometheus

Missing Series

Query trouble:
● sum(rate(ops_total[5m]))

⇨ empty result when no op has happened yet

● sum(rate(ops_total{optype=”create”}[5m]))
⇨ empty result when no “create” op has happened yet

Can break alerts and dashboards!

Prometheus

Missing Series

If feasible:
Initialize known label values to 0. In Go:

for _, val := range opLabelValues {
 // Note: No ".Inc()" at the end.
 ops.WithLabelValues(val)
}

Client libs automatically initialize label-less metrics to 0.

Prometheus

Missing Series
Initializing not always feasible. Consider:

 http_requests_total{status="<status>"}

A status=~"5.." filter will break if no 5xx has occurred.

Either:

● Be aware of this

● Add missing label sets via or based on metric that exists (like up):
 <expression> or up{job="myjob"} * 0

See https://www.robustperception.io/existential-issues-with-metrics/

https://www.robustperception.io/existential-issues-with-metrics/

Prometheus

Metric Normalization

● Avoid non-identifying extra-info labels
Example:
cpu_seconds_used_total{role="db-server"}
disk_usage_bytes{role="db-server"}

● Breaks series continuity when role changes
● Instead, join in extra info from separate metric:

https://www.robustperception.io/how-to-have-labels-for-machine-roles/

https://www.robustperception.io/how-to-have-labels-for-machine-roles/

Prometheus

Alerting

Prometheus

General Alerting Guidelines

Rob Ewaschuk's "My Philosophy on Alerting" (Google it)

Some points:

● Page on user-visible symptoms, not on causes

○ ...and on immediate risks ("disk full in 4h")

● Err on the side of fewer pages

● Use causal metrics to answer why something is broken

https://docs.google.com/document/d/199PqyG3UsyXlwieHaqbGiWVa8eMWi8zzAn0YfcApr8Q/edit

Prometheus

Unhealthy or Missing Targets

Consider:

 ALERT HighErrorRate

 IF rate(errors_total{job="myjob"}[5m]) > 10

 FOR 5m

Congrats, amazing alert!

But what if your targets are down or absent in SD?

 ⇨ empty expression result, no alert!

Prometheus

Unhealthy or Missing Targets

⇨ Always have an up-ness and presence alert per job:

 # (Or alert on up ratio or minimum up count).

 ALERT MyJobInstanceDown

 IF up{job="myjob"} == 0

 FOR 5m

 ALERT MyJobAbsent

 IF absent(up{job="myjob"})

 FOR 5m

Prometheus

FOR Duration

Don't make it too short or missing!

 ALERT InstanceDown

 IF up == 0

Single failed scrape causes alert!

Prometheus

FOR Duration

Don't make it too short or missing!

 ALERT InstanceDown

 IF up == 0

 FOR 5m

Prometheus

FOR Duration

Don't make it too short or missing!

 ALERT MyJobMissing

 IF absent(up{job="myjob"})

Fresh (or long down) server may immediately alert!

Prometheus

FOR Duration

Don't make it too short or missing!

 ALERT MyJobMissing

 IF absent(up{job="myjob"})

 FOR 5m

Prometheus

FOR Duration

⇨ Make this at least 5m (usually)

Prometheus

FOR Duration

Don't make it too long!

 ALERT InstanceDown

 IF up == 0

 FOR 1d

No FOR persistence across restarts! (#422)

https://github.com/prometheus/prometheus/issues/422

Prometheus

FOR Duration

⇨ Make this at most 1h (usually)

Prometheus

Preserve Common / Useful Labels
Don't:

 ALERT HighErrorRate

 IF sum(rate(...)) > x

Do (at least):

 ALERT HighErrorRate

 IF sum by(job) (rate(...)) > x

Useful for later routing/silencing/...

Prometheus

Querying

Prometheus

Scope Selectors to Jobs

● Metric name has single meaning only within one binary (job).

● Guard against metric name collisions between jobs.

● ⇨ Scope metric selectors to jobs (or equivalent):

Don't: rate(http_request_errors_total[5m])

Do: rate(http_request_errors_total{job="api"}[5m])

Prometheus

Order of rate() and sum()
Counters can reset. rate() corrects for this:

Prometheus

Order of rate() and sum()
sum() before rate() masks resets!

Prometheus

Order of rate() and sum()
sum() before rate() masks resets!

Prometheus

Order of rate() and sum()

⇨ Take the sum of the rates, not the rate
of the sums!

(PromQL makes it hard to get wrong.)

Prometheus

Thanks!

