
Brian Brazil
Founder

110 Rules for Prometheus

Brian Brazil
Founder

110 Rules for Prometheus
Rule 110

Who am I?

● One of the core developers of Prometheus

● Founder of Robust Perception

● Primary author of Reliable Insights blog

● Contributor to many open source projects

● Ex-Googler, after 7 years in the Dublin office

You may have heard of me :)

Looking Back..

Last year I gave a lightning talk on "An Exploration of the Formal Properties of
PromQL" demonstrating that PromQL was Turing Complete via Conway's Life.

But maybe you missed that. Or found it a bit too formal.

So let's have another go.

Rule 110
Rule 110 is a linear cellular automata. It's one dimensional compared, to Conway's
Life's two dimensions. Also Turing Complete.

It follows the following rule on each iteration:

The bottom number is 110 in binary.

111 110 101 100 011 010 001 000

0 1 1 0 1 1 1 0

Doing this in PromQL
We could create a state metric with 0s and 1s and then do something custom to
visualise how it changes over time.

Sounds like a lot of work.

But we already have things that visualise changes in state over time, such as the
expression browser.

Could we make that work?

New in Prometheus 2.0
We could have the values for the various cells be 0 if it's dead, or 1/2/3/4/etc.
according to the cell number if it's alive.

Even better would be if we could show the gaps as gaps - which we can do now
with Prometheus 2.0 staleness and expression browser updates!

So thanks to whoever implemented those changes!

Start small...
init{x="1"} = 1

state =
 state
 or
 (label_replace(state, "x", "1$1", "x", "^(.*)$")) + 1
 or
 init

Rule 110 only grows left, so don't need to worry about negative numbers.

Start small...

Da Rules - 011
 (
 state
 unless
 label_replace(state, "x", "1$1", "x", "^(.*)$")
 and
 label_replace(state, "x", "$1", "x", "^1(.*)$")
)

Keep alive if the left cell missing/empty and the right cell is present/alive.

Da Rules - 110 & 010
 (
 state
 unless
 label_replace(state, "x", "$1", "x", "^1(.*)$")
)

Keep the cell alive if the cell to the right is missing/empty.

Da Rules - 101 & 001
 (
 (label_replace(state, "x", "1$1", "x", "^(.*)$")) + 1
 unless
 state
)

Change cell is alive it's currently missing/empty, and the cell to the right is
present/alive.

As this cell is missing, we create the cell labels from the right cell.

Da Rules - Other cases
Finally we or these three expressions together.

All the other rules produce empty, so no need to mention them.

We also or in init to get things started. The rightmost cell is meant to stay 1
forever, so this is fine.

Result!

What have we learned?

● PromQL is still Turing Complete

● Rule 110, which is Turing Complete, was implementable in PromQL

● Does who know what "Turing Tarpit" means are utterly unsurprised by this

● New staleness can be used for crazy inadvisable things
● Brian may know some things about PromQL

Resources

Robust Perception Blog: www.robustperception.io/blog

Queries: prometheus@robustperception.io

http://www.robustperception.io/blog
mailto:prometheus@robustperception.io

	Slide 1
	Slide 2
	Who am I?
	Looking Back..
	Rule 110
	Doing this in PromQL
	New in Prometheus 2.0
	Start small...
	Start small...
	Da Rules - 011
	Da Rules - 110 & 010
	Da Rules - 101 & 001
	Da Rules - Other cases
	Result!
	What have we learned?
	Resources

