
Autoscaling All Things Kubernetes
with Prometheus

Michael Hausenblas & Frederic Branczyk, Red Hat

@mhausenblas @fredbrancz

https://twitter.com/mhausenblas
https://twitter.com/fredbrancz

Autoscaling?

● On an abstract level:

○ Calculate resources to cover demand

○ Demand measured by metrics

○ Metrics must be collected, stored and queryable

● Ultimately to fulfill

○ Service Level Objectives (SLO) …

○ of Service Level Agreements (SLA) …

○ through Service Level Indicators (SLI)

Types of autoscaling (in Kubernetes)

● Cluster-level

● App-level

○ Horizontal

○ Vertical

Horizontal autoscaling

● Horizontal pod autoscaler

● Resource: replicas

● “Increasing replicas when necessary”

● Requires application to be designed to scale horizontally

+

Vertical autoscaling

● Vertical pod autoscaler

● Resource: CPU/Memory

● “Increasing CPU/Memory when necessary”

● Less complicated to design for resource increase

● Harder to autoscale

History of autoscaling on Kubernetes

● Autoscaling used to heavily rely on Heapster

○ Heapster collects metrics and writes to time-series database

○ Metrics collection via cAdvisor (container + custom-metrics)

● We could autoscale!

Heapster

… but not based on

Prometheus metrics :(

Enter:

Resource & Custom Metrics API

Resource & Custom Metrics APIs

● Well defined APIs:

○ Not an implementation, an API spec

○ Implemented and maintained by vendors

○ Returns single value

● For us, most importantly: Allowing Prometheus as a metric source

Kubernetes API
Aggregation

k8s-prometheus-
adapter Prometheus

But only
Horizontal Autoscaling

So what about vertical
autoscaling?

Enter:

Vertical Pod Autoscaling

VPA demo

Background & terminology

Background & terminology

● Scheduling

○ nodes offer resources

○ pods consume resources

○ scheduler matches needs of pods based on requests

● Types of resources (compressible/incompressible)

● Quality-of-Service (QoS)

○ Guaranteed: limit == request

○ Burstable: limit > request > 0

○ Best-Effort: ∄ (limit, request)

Motivation

Unfortunately, Kubernetes has not yet
implemented dynamic resource
management, which is why we have to set
resource limits for our containers. I imagine
that at some point Kubernetes will start
implementing a less manual way to manage
resources, but this is all we have for now.

Ben Visser, 12/2016
Kubernetes — Understanding Resources

Kubernetes doesn’t have dynamic resource
allocation, which means that requests and
limits have to be determined and set by the
user. When these numbers are not known
precisely for a service, a good approach is to
start it with overestimated resources
requests and no limit, then let it run under
normal production load for a certain time.

Antoine Cotten, 05/2016
1 year, lessons learned from a 0 to Kubernetes transition

http://www.noqcks.io/note/kubernetes-resources-limits/
https://acotten.com/post/1year-kubernetes

Goals

● Automating configuration of resource requirements

○ manually setting requests is brittle & hard so people don’t do it

○ no requests set → QoS is best effort :(

● Improving utilization

○ can better bin pack

○ impact on other functionality such as out of resource handling or an

(aspirational) optimizing scheduler

https://kubernetes.io/docs/tasks/administer-cluster/out-of-resource/

Use Cases

● For stateful apps, for example

Wordpress or single-node databases

● Can help on-boarding of "legacy"

apps, that is, non-horizontally

scalable ones

Interlude: API server

Interlude: API server

Basic idea

● observe resource consumption of all pods

● build up historic profile (recommender)

● apply to pods on an opt-in basis via labels (updater)

VPA architecture

Limitations

● pre-alpha, so need testing and tease

out edge-cases

● in-place updates (requires support from

container runtime)

● usage spikes—how to deal with it best?

https://github.com/kubernetes/kubernetes/issues/5774

Resources & what’s next?

● VPA issue 10782

● VPA design

● Test, provide feedback

● SIG Autoscaling—come and join us on #sig-autoscaling

or weekly online meetings on Monday

● SIG Instrumentation and SIG Autoscaling work towards a

historical metrics API—get involved there!

https://github.com/kubernetes/kubernetes/issues/10782
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/autoscaling/vertical-pod-autoscaler.md
https://github.com/kubernetes/community/tree/master/sig-autoscaling

learn.openshift.com

plus.google.com/+RedHat

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHatNews

