
Hidden Linux Metrics with ebpf_exporter
Ivan Babrou

@ibobrik
Performance team @Cloudflare

What does Cloudflare do

CDN
Moving content physically

closer to visitors with
our CDN.

Intelligent caching

Unlimited DDOS
mitigation

Unlimited bandwidth at
flat pricing with free

plans

Website Optimization
Making web fast and up to

date for everyone.

TLS 1.3 (with 0-RTT)

HTTP/2 + QUIC

Server push

AMP

Origin load-balancing

Smart routing

Workers

Post quantum crypto

Many more

DNS
Cloudflare is the fastest
managed DNS providers

in the world.

1.1.1.1

2606:4700:4700::1111

DNS over TLS

Link to slides with speaker notes
Slideshare doesn’t allow links on the first 3 slides

https://docs.google.com/presentation/d/1420m05QANTxrCPvwsLZSHWRTvqOsxCVRzJsVp9awoFg/edit?usp=sharing

Monitoring Cloudflare's planet-scale
edge network with Prometheus
Matt Bostock from Cloudflare was here last year talking about how we use Prometheus at Cloudflare.

Check out video and slides for his presentation.

https://www.youtube.com/watch?v=ypWwvz5t_LE
https://drive.google.com/file/d/0BzRE_fwreoDQcTF2WUtHRXp0ZzA/view

100+
Data centers globally

1.2M
DNS requests/s

10%
Internet requests

everyday

5M
HTTP requests/second

Websites, apps & APIs
in 150 countries

6M+

Cloudflare’s anycast network

2.5M

10M

150+

10M+

4.6M
Time-series

max per server

4
Top-level

Prometheus servers

185
Prometheus servers

currently in production

72K
Samples ingested per

server max

Max size of
data on disk

250GB

Cloudflare’s Prometheus deployment

5

85K

9.0M

420GB

267

But this is a talk about an exporter

Two main options to collect system metrics

node_exporter

Gauges and counters for system metrics with lots of plugins:

cpu, diskstats, edac, filesystem, loadavg, meminfo, netdev, etc

cAdvisor
Gauges and counters for container level metrics:

cpu, memory, io, net, delay accounting, etc.

Check out this issue about Prometheus friendliness.

https://github.com/google/cadvisor/issues/1989

Example graphs from node_exporter

Example graphs from node_exporter

Example graphs from cAdvisor

Counters are easy, but lack detail: e.g. IO

What’s the distribution?

● Many fast IOs?

● Few slow IOs?

● Some kind of mix?

● Read vs write speed?

Histograms to the rescue

● Counter:

node_disk_io_time_ms{instance="foo", device="sdc"} 39251489

● Histogram:

bio_latency_seconds_bucket{instance="foo", device="sdc", le="+Inf"} 53516704

bio_latency_seconds_bucket{instance="foo", device="sdc", le="67.108864"} 53516704

...

bio_latency_seconds_bucket{instance="foo", device="sdc", le="0.001024"} 51574285

bio_latency_seconds_bucket{instance="foo", device="sdc", le="0.000512"} 46825073

bio_latency_seconds_bucket{instance="foo", device="sdc", le="0.000256"} 33208881

bio_latency_seconds_bucket{instance="foo", device="sdc", le="0.000128"} 9037907

bio_latency_seconds_bucket{instance="foo", device="sdc", le="6.4e-05"} 239629

bio_latency_seconds_bucket{instance="foo", device="sdc", le="3.2e-05"} 132

bio_latency_seconds_bucket{instance="foo", device="sdc", le="1.6e-05"} 42

bio_latency_seconds_bucket{instance="foo", device="sdc", le="8e-06"} 29

bio_latency_seconds_bucket{instance="foo", device="sdc", le="4e-06"} 2

bio_latency_seconds_bucket{instance="foo", device="sdc", le="2e-06"} 0

Can be nicely visualized with new Grafana

Disk upgrade in production

Larger view to see in detail

So much for holding up to spec

Linux kernel only gives you counters

Autodesk research: Datasaurus (animated)

https://www.autodeskresearch.com/publications/samestats

Autodesk research: Datasaurus (animated)

https://www.autodeskresearch.com/publications/samestats

You need individual events for histograms

● Solution has to be low overhead (no blktrace)

● Solution has to be universal (not just IO tracing)

● Solution has to be supported out of the box (no modules or patches)

● Solution has to be safe (no kernel crashes or loops)

Enter eBPF

Low overhead sandboxed user-defined bytecode running in kernel.

It can never crash, hang or interfere with the kernel negatively.

If you run Linux 4.1 (June 2015) or newer, you already have it.

Great intro from Brendan Gregg: http://www.brendangregg.com/ebpf.html

BPF and XDP reference: https://cilium.readthedocs.io/en/v1.1/bpf/

http://www.brendangregg.com/ebpf.html
https://cilium.readthedocs.io/en/v1.1/bpf/

It’s a bytecode you don’t have to write
0: 79 12 20 00 00 00 00 00 r2 = *(u64 *)(r1 + 32)

1: 15 02 03 00 57 00 00 00 if r2 == 87 goto +3

2: b7 02 00 00 00 00 00 00 r2 = 0

3: 79 11 28 00 00 00 00 00 r1 = *(u64 *)(r1 + 40)

4: 55 01 01 00 57 00 00 00 if r1 != 87 goto +1

5: b7 02 00 00 01 00 00 00 r2 = 1

6: 7b 2a f8 ff 00 00 00 00 *(u64 *)(r10 - 8) = r2

7: 18 11 00 00 03 00 00 00 00 00 00 00 00 00 00 00 ld_pseudo r1, 1, 3

9: bf a2 00 00 00 00 00 00 r2 = r10

10: 07 02 00 00 f8 ff ff ff r2 += -8

11: 85 00 00 00 01 00 00 00 call 1

12: 15 00 04 00 00 00 00 00 if r0 == 0 goto +4

13: 79 01 00 00 00 00 00 00 r1 = *(u64 *)(r0 + 0)

14: 07 01 00 00 01 00 00 00 r1 += 1

15: 7b 10 00 00 00 00 00 00 *(u64 *)(r0 + 0) = r1

16: 05 00 0a 00 00 00 00 00 goto +10

17: b7 01 00 00 01 00 00 00 r1 = 1

18: 7b 1a f0 ff 00 00 00 00 *(u64 *)(r10 - 16) = r1

eBPF in a nutshell

● You can write small C programs that attach to kernel functions

○ Max 4096 instructions, 512B stack, in-kernel JIT for opcodes

○ Verified and guaranteed to terminate

○ No crossing of kernel / user space boundary

● You can use maps to share data with these programs (extract metrics)

BCC takes care of compiling C (dcstat)

int count_lookup(struct pt_regs *ctx) { // runs after d_lookup kernel function

struct key_t key = { .op = S_SLOW };

bpf_get_current_comm(&key.command, sizeof(key.command)); // helper function to get current command

counts.increment(&key); // update map you can read from userspace

if (PT_REGS_RC(ctx) == 0) {

key.op = S_MISS;

val = counts.increment(&key); // update another key if it’s a miss

}

return 0;

}

BCC has bundled tools: biolatency

$ sudo /usr/share/bcc/tools/biolatency

Tracing block device I/O... Hit Ctrl-C to end.

^C

usecs : count distribution

0 -> 1 : 0 | |

2 -> 3 : 0 | |

4 -> 7 : 0 | |

8 -> 15 : 0 | |

16 -> 31 : 3 | |

32 -> 63 : 14 |* |

64 -> 127 : 107 |******** |

128 -> 255 : 525 |**|

256 -> 511 : 68 |***** |

512 -> 1023 : 10 | |

BCC has bundled tools: execsnoop

execsnoop

PCOMM PID RET ARGS

bash 15887 0 /usr/bin/man ls

preconv 15894 0 /usr/bin/preconv -e UTF-8

man 15896 0 /usr/bin/tbl

man 15897 0 /usr/bin/nroff -mandoc -rLL=169n -rLT=169n -Tutf8

man 15898 0 /usr/bin/pager -s

nroff 15900 0 /usr/bin/locale charmap

nroff 15901 0 /usr/bin/groff -mtty-char -Tutf8 -mandoc -rLL=169n -rLT=169n

groff 15902 0 /usr/bin/troff -mtty-char -mandoc -rLL=169n -rLT=169n -Tutf8

groff 15903 0 /usr/bin/grotty

BCC has bundled tools: ext4slower

ext4slower 1

Tracing ext4 operations slower than 1 ms

TIME COMM PID T BYTES OFF_KB LAT(ms) FILENAME

06:49:17 bash 3616 R 128 0 7.75 cksum

06:49:17 cksum 3616 R 39552 0 1.34 [

06:49:17 cksum 3616 R 96 0 5.36 2to3-2.7

06:49:17 cksum 3616 R 96 0 14.94 2to3-3.4

06:49:17 cksum 3616 R 10320 0 6.82 411toppm

06:49:17 cksum 3616 R 65536 0 4.01 a2p

06:49:17 cksum 3616 R 55400 0 8.77 ab

06:49:17 cksum 3616 R 36792 0 16.34 aclocal-1.14

06:49:17 cksum 3616 R 15008 0 19.31 acpi_listen

06:49:17 cksum 3616 R 6123 0 17.23 add-apt-repository

06:49:17 cksum 3616 R 6280 0 18.40 addpart

Making use of all that with ebpf_exporter

● Many BCC tools make sense as metrics, so let’s use that

● Exporter compiles user-defined BCC programs and loads them

● Programs run in the kernel and populate maps

● During scrape exporter pulls all maps and transforms them:

○ Map keys to labels (disk name, function name, cpu number)

○ Map values to metric values

○ There are no float values in eBPF

https://github.com/cloudflare/ebpf_exporter

Getting timer counters into Prometheus

metrics:

counters:

- name: timer_start_total

help: Timers fired in the kernel

table: counts

labels:

- name: function

size: 8

decoders:

- name: ksym

tracepoints:

timer:timer_start: tracepoint__timer__timer_start

code: |

BPF_HASH(counts, u64);

// Generates tracepoint__timer__timer_start

TRACEPOINT_PROBE(timer, timer_start) {

counts.increment((u64) args->function);

return 0;

}

Code to run in the kernel
and populate the map

How to turn map into metrics
readable by Prometheus

Getting timer counters into Prometheus

See Cloudflare blog post: “Tracing System CPU on Debian Stretch”.

TL;DR: Debian upgrade triggered systemd bug where it broke TCP
segmentation offload, which increased CPU load 5x and introduced
lots of interesting side effects up to memory allocation stalls.

If we had timer metrics enabled, we would have seen this sooner.

Why can timers be useful?

https://blog.cloudflare.com/tracing-system-cpu-on-debian-stretch/

Other bundled examples: IPC

See Brendan Gregg’s blog post: “CPU Utilization is Wrong”.

TL;DR: same CPU% may mean different throughput in terms of CPU
work done. IPC helps to understand the workload better.

Why can instructions per cycle be useful?

http://www.brendangregg.com/blog/2017-05-09/cpu-utilization-is-wrong.html

Other bundled examples: LLC (L3 Cache)

You can answer questions like:

● Do I need to pay more for a CPU with bigger L3 cache?

● How does having more cores affect my workload?

LLC hit rate usually follows IPC patterns as well.

Why can LLC hit rate be useful?

Other bundled examples: run queue delay

See: “perf sched for Linux CPU scheduler analysis” by Brendan G.

You can see how contended your system is, how effective is the

scheduler and how changing sysctls can affect that.

It’s surprising how high delay is by default.

From Scylla: “Reducing latency spikes by tuning the CPU scheduler”.

Why can run queue latency be useful?

http://www.brendangregg.com/blog/2017-03-16/perf-sched.html
https://www.scylladb.com/2016/06/10/read-latency-and-scylla-jmx-process/

How many things can you measure?

Numbers are from a production Cloudflare machine running Linux 4.14:

● 501 hardware events and counters:

○ sudo perf list hw cache pmu | grep '^ [a-z]' | wc -l

● 1853 tracepoints:

○ sudo perf list tracepoint | grep '^ [a-z]' | wc -l

● Any non-inlined kernel function (there’s like a bazillion of them)

● No support for USDT or uprobes yet

Tools bundled with BCC

You should always measure yourself (system CPU is the metric).

Here’s what we’ve measured for getpid() syscall:

eBPF overhead numbers for kprobes

https://github.com/cloudflare/ebpf_exporter/tree/master/benchmark
https://github.com/cloudflare/ebpf_exporter/tree/master/benchmark

Where should you run ebpf_exporter

Anywhere where overhead is worth it.

● Simple programs can run anywhere

● Complex programs (run queue latency) can be gated to:

○ Canary machines where you test upgrades

○ Timeline around updates

At Cloudflare we do exactly this, except we use canary datacenters.

Thank you

Run it: https://github.com/cloudflare/ebpf_exporter (there are docs!)

Reading materials on eBPF:

● https://iovisor.github.io/bcc/

● https://github.com/iovisor/bcc/blob/master/docs/reference_guide.md

● http://www.brendangregg.com/ebpf.html

● http://docs.cilium.io/en/latest/bpf/

Ivan on twitter: @ibobrik

https://github.com/cloudflare/ebpf_exporter
https://iovisor.github.io/bcc/
https://github.com/iovisor/bcc/blob/master/docs/reference_guide.md
http://www.brendangregg.com/ebpf.html
http://docs.cilium.io/en/latest/bpf/
https://twitter.com/ibobrik

Questions?

