
Brian Brazil

Founder

Evaluating Prometheus

Knowledge in Interviews

Who am I?

● One of the developers of Prometheus

● Author of Prometheus: Up&Running

● Primary author of Reliable Insights blog

You may have heard of me :)

Looking Back..

Two years I gave a lightning talk on "An Exploration of the

Formal Properties of PromQL" demonstrating that PromQL

was Turing Complete via Conway's Life.

Last year I gave a talk on "Rule 110 for Prometheus", a

simpler demonstration of the above.

Filtering

With the growth of the ecosystem you may looking to hire an

employee with existing experience to assist you on your

Prometheus journey.

How can you filter the wheat from the chaff?

CV

You could look at someone's experience with Prometheus

● Are they a Prometheus developer?

● Have they written a book?

● Do they have a well known blog?

● Have they demonstrated esoteric PromQL knowledge?

But the technology is fairly new, and this is a high bar. No

one has 10+ years of experience with Prometheus after all!

Low Pass Filter

Rather than looking for a unicorn, how about instead throwing

away applicants that are pretty obviously faking it until they

make it.

From there you can more deeply consider the remaining

applicants.

Enter FizzBuzz.

FizzBuzz

Write a program that prints the numbers from 1 to 100. But for

multiples of three print “Fizz” instead of the number and for

the multiples of five print “Buzz”. For numbers which are

multiples of both three and five print “FizzBuzz”.

Source: http://wiki.c2.com/?FizzBuzzTest

http://wiki.c2.com/?FizzBuzzTest

FizzBuzz for Prometheus

FizzBuzz is a trivial programming task, that an experienced

programmer should have no problem coding up.

We could use this to evaluate PromQL knowledge, and thus

get an idea if someone has at least a very basic

understanding of Prometheus.

Let's do it then!

FizzBuzz is a trivial problem, but let me share my solution.

Input Data

We'll need some input data

for the for loop.

We can build it up with a

recording rule.

Input Recording Rule
record: input

expr: >

(

input

or

count_values("number", (input + 1) <= 100)

* on() group_left

max(input) + 1

or

vector(0)

)

Output

From there we need to filter based on the values.

PromQL has a modulus operator, and label_replace can do

strings, so this isn't hard.

Output Recording Rule
record: output

expr: >

(

label_replace(input % 15 == 0, "output", "FizzBuzz", "", "")

or on (number)

label_replace(input % 5 == 0, "output", "Buzz", "", "")

or on (number)

label_replace(input % 3 == 0, "output", "Fizz", "", "")

or on (number)

label_replace(input, "output", "$1", "number", "(.*)")

)

Output Result

The answer is right, but

out of order.

That can be fixed.

Output Recording Rule - v2
record: output

expr: >

(

label_replace(input % 15 == 0, "output", "FizzBuzz", "", "")

or on (number)

label_replace(input % 5 == 0, "output", "Buzz", "", "")

or on (number)

label_replace(input % 3 == 0, "output", "Fizz", "", "")

or on (number)

label_replace(input, "output", "$1", "number", "(.*)")

) * 0 + on(number) group_left input > 0

Output Result v2 and Sorted

The values now match

in input number, so we
can do sort(output)!

Resources

Book: http://shop.oreilly.com/product/0636920147343.do

Robust Perception Blog: www.robustperception.io/blog

Queries: prometheus@robustperception.io

http://shop.oreilly.com/product/0636920147343.do
http://www.robustperception.io/blog
mailto:prometheus@robustperception.io

