
Monitoring at Scale
Migrating to Prometheus at Fastly

PROMCON 2018 | Marcus Barczak
@ickymettle

How were we
monitoring Fastly?

+

๏ Operational overhead.

๏ Limited graphing functions.

๏ No alerting support,

๏ No real API for consuming metric data.

Growing pains with Ganglia

aaS

+

+

๏ Now supporting two systems.

๏ Where do I put my metrics?

๏ Still writing external plugins and agents.

๏ Monitoring treated as a "post-release" phase.

Growing pains doubled

Scaling our infrastructure
horizontally

Required scaling our monitoring
vertically

Third time lucky

๏ Scale with our infrastructure growth,

๏ Be easy to deploy and operate.

๏ Engineer friendly instrumentation libraries.

๏ First class API support for data access.

๏ To reinvigorate our monitoring culture. 
See: https://peter.bourgon.org/observability-the-hard-parts/

Project goals

https://peter.bourgon.org/observability-the-hard-parts/

?

๏ Build a proof of concept.

๏ Pair with pilot team to instrument their services.

๏ Iterate through the rest.

๏ Run both systems in parallel.

๏ Decommission SaaS system and Ganglia.

Getting started

Infrastructure
build

prometheus A prometheus B

scrapes
targets

SJC

scrapes
targets

prometheus A prometheus B

scrapes
targets

SJC

scrapes
targets

prometheus A prometheus B

scrapes
targets

JFK

scrapes
targets

prometheus A prometheus B

scrapes
targets

ATL

scrapes
targets

prometheus A prometheus B

scrapes
targets

SJC

scrapes
targets

prometheus A prometheus B

scrapes
targets

JFK

scrapes
targets

prometheus A prometheus B

scrapes
targets

ATL

scrapes
targets

GCP

federator A federator B

frontend stack

prometheus A prometheus B

scrapes
targets

SJC

scrapes
targets

prometheus A prometheus B

scrapes
targets

JFK

scrapes
targets

prometheus A prometheus B

scrapes
targets

ATL

scrapes
targets

GCP

federator A federator B

frontend stack

Query Traffic (TLS)

Prometheus Server
Software Stack

Ghost Tunnel
TLS termination and auth.

Service Discovery Sidecar
Target configuration

Rules Loader
Recording and Alert rules

Prometheus

Prometheus Server
Software Stack

Ghost Tunnel
TLS termination and auth.

Service Discovery Sidecar
Target configuration

Rules Loader
Recording and Alert rules

Prometheus

Typical Server
Software Stack

Service Discovery Proxy
Service discovery and

TLS exporter proxy

Exporters
Built into services or sidecar

Build your own
service discovery?

Fastly's infrastructure
is bare metal hardware

 no cloud conveniences

๏ Automatic discovery of targets.

๏ Self-service registration of exporter endpoints,

๏ TLS encryption for all exporter traffic.

๏ Minimal exposure of exporter TCP ports.

Service discovery requirements

Prometheus Server
Software Stack

Ghost Tunnel
TLS termination and auth.

PromSD Sidecar
Target configuration

Prometheus

Typical Server
Software Stack

PromSD Proxy
Service discovery and

TLS exporter proxy

Exporters
Built into services or sidecar

generates config
for prometheus

scrapes proxied targets over TLS

queries for
available targets

promsd sidecar

"exporter_hosts": [
 "10.0.0.1",
 "10.0.0.2",
 "10.0.0.3",
 "10.0.0.4"
]

configly

fetch list of hosts

in a datacenter

1

promsd proxy

request /targets endpoint

for each host to get list

of available scrape targets

32

3

output all targets as a

file service discovery

JSON file

4

Prometheus reads

the file and scrapes

the configured

targets.

{
 "targets": [
 “10.0.0.1:9702”,
 “10.0.0.2:9702”
],
 "labels": {
 "__metrics_path__": “/node_exporter_9100/metrics",
 "job": “node_exporter”
 }
},
{
 "targets": [
 “10.0.0.1:9702”,
 “10.0.0.2:9702”
],
 "labels": {
 "__metrics_path__": "/varnishstat_exporter_19102/metrics",
 "job": "varnishstat_exporter"
 }
}

PromSD sidecar

promsd proxy

fetch list of installed
systemd services

node_exporter

process_exporter

systemd

 "node_exporter": {
 "prometheus_properties": {
 "target": "127.0.0.1:9100"
 }
 },
 …
 "varnishstat_exporter": {
 "prometheus_properties": {
 "target": "127.0.0.1:19102"
 }
 }

for each corresponding
systemd service fetch the
local exporter target address

varnishstat_exporter

1

32

3

configly

exposes an API
used by prometheus
and promsd sidecar

/node_exporter_9100/metrics
/varnish_exporter_19102/metrics

/targetssidecar

PromSD proxy

๏ Really easy to leverage the file SD mechanism.

๏ New targets can be added with one line of config.

๏ TLS and authentication everywhere.

๏ Single exporter port open per host.

It worked!

Prometheus Adoption

Prometheus at Scale at Fastly

 114 Prometheus servers globally

 28.4M time series

 2.2M million samples/second

... a few hours later

๏ Engineers love it.

๏ Dashboard and alert quality have increased.

๏ PromQL enables some deep insights.

๏ Scaling linearly with our infrastructure growth.

Prometheus wins

๏ Metrics exploration without prior knowledge.

๏ Alertmanager's flexibility.

๏ Federation and global views.

๏ Long term storage still an open question.

Still some rough edges.

😍

Thanks!
@ickymettle fastly.com

