
@snehainguva

observability and product release:
leveraging prometheus

to build and test new products

digitalocean.com

digitalocean.com

about me

software engineer @DigitalOcean
currently network services
<3 cats

digitalocean.com

some stats

digitalocean.com

90M+ timeseries

85 instances of prometheus

1.7M+ samples/sec

digitalocean.com

the history

digitalocean.com

ye’ olden days
use nagios + various plugins to monitor

use collectd + statsd + graphite

openTSDB

digitalocean.com

lovely prometheus
white-box monitoring

multi-dimensional data model

fantastic querying language

digitalocean.com

glorious kubernetes
easily deploy and update services

scalability

combine with prometheus + alertmanager

digitalocean.com

sneha joins networking
set up monitoring for VPC

working on DHCP

how can we use prometheus even before release?

digitalocean.com

the plan:
✔ observability DigitalOcean

 build --- instrument --- test --- iterate

 examples

digitalocean.com

metrics: time-series of sampled data

tracing: propagating metadata through
different requests, threads, and processes

logging: record of discrete events over time

digitalocean.com

metrics:
what do we measure?

digitalocean.com

four golden signals

digitalocean.com

latency: time to service a request

traffic: requests/second

error: error rate of requests

saturation: fullness of a service

digitalocean.com

Utilization

Saturation

Error rate

digitalocean.com

“USE metrics often allow users to
solve 80% of server issues with 5%

of the effort.”

digitalocean.com

the plan:
✔ observability DigitalOcean

✔ build --- instrument --- test --- iterate

 examples

digitalocean.com

build:

design the service

write it in go

use internally shared libraries

digitalocean.com

build: doge/dorpc - shared rpc library
var DefaultInterceptors = []string{ StdLoggingInterceptor, StdMetricsInterceptor, StdTracingInterceptor}

func NewServer(opt ...ServerOpt) (*Server, error) {

opts := serverOpts{

name: "server",

clientTLSAuth: tls.VerifyClientCertIfGiven,

intercept: interceptor.NewPathInterceptor(interceptor.DefaultInterceptors...),

keepAliveParams: DefaultServerKeepAlive,

keepAliveEnforce: DefaultServerKeepAliveEnforcement,

}

 …
}

digitalocean.com

instrument:

send logs to centralized logging

send spans to trace-collectors

set up prometheus metrics

digitalocean.com

metrics instrumentation: go-client
func (s *server) initalizeMetrics() {

s.metrics = metricsConfig{

attemptedConvergeChassis: s.metricsNode.Gauge("attempted_converge_chassis", "number of chassis

converger attempting to converge"),

failedConvergeChassis: s.metricsNode.Gauge("failed_converge_chassis", "number of chassis that failed to

converge"),

}

}

func (s *server) ConvergeAllChassis(...) {

...

s.metrics.attemptedConvergeChassis(float64(len(attempted)))

s.metrics.failedConvergeChassis(float64(len(failed)))

...

}

digitalocean.com

Quick Q & A: Collector Interface

// A collector must be registered.
prometheus.MustRegister(collector)

type Collector interface {

// Describe sends descriptors to channel.
Describe(chan<- *Desc)

// Collect is used by the prometheus registry on a scrape.
// Metrics are sent to the provided channel.
Collect(chan<- Metric)

}

digitalocean.com

metrics instrumentation: third-party exporters

Built using the collector interface

Sometimes we build our own

Often we use others:
github.com/prometheus/mysqld_exporter
github.com/kbudde/rabbitmq_exporter
github.com/prometheus/node_exporter
github.com/digitalocean/openvswitch_exporter

digitalocean.com

metrics instrumentation: in-service collectors
type RateMap struct {

mu sync.Mutex

...

rateMap map[string]*rate

}

var _ prometheus.Collector = &RateMapCollector{}

func (r *RateMapCollector) Describe(ch chan<- *prometheus.Desc) {

ds := []*prometheus.Desc{ r.RequestRate}

for _, d := range ds {

ch <- d

}

}

func (r *RateMapCollector) Collect(ch chan<- prometheus.Metric) {

...

ch <- prometheus.MustNewConstHistogram(r.RequestRate, count, sum, rateCount)

}

digitalocean.com

metrics instrumentation: dashboards #1

state metrics

digitalocean.com

metrics instrumentation: dashboard #2

request
rate

request
latency

digitalocean.com

metrics instrumentation: dashboard #3

utilization
metrics

digitalocean.com

metrics instrumentation: dashboard #4

queries/second

utilization

digitalocean.com

metrics instrumentation: dashboard #6

metrics instrumentation: dashboard #5

saturation
metric

digitalocean.com

test:

load testing:
grpc-clients and goroutines

chaos testing:
take down a component of a system

integration testing:
how does this feature integrate with the cloud?

digitalocean.com

testing: identify key issues

how is our latency?

is there a goroutine leak?

does resource usage increase with traffic?

is there a high error rate?

how are our third-party services?

use tracing to dig down

use cpu and memory profiling

use a worker pool

check logs for types of error

digitalocean.com

testing: tune metrics + alerts

do we need more labels for our metrics?

should we collect more data?

State-based alerting: Is our service up or down?

Threshold alerting: When does our service fail?

digitalocean.com

testing: documentation

set up operational playbooks
document recovery efforts

digitalocean.com

iterate!
(but really, let’s look at some examples…)

digitalocean.com

the plan:
✔ observability DigitalOcean

✔ build --- instrument --- test --- iterate

✔ examples

digitalocean.com

product #1: DHCP
(hvaddrd)

digitalocean.com

product #1: DHCP

hvflowd

hvaddrd

OvS
br0

RNS

OpenFlow

SetParameters

addr0

bolt

DHCPv4 NDP

gRPC

DHCPv6

tapX dropletX

hvaddrd traffic

AddFlows

Hypervisor

main

DHCP: load testing

digitalocean.com

DHCP: load testing (2)

digitalocean.com

DHCP: custom conn collector

digitalocean.com

package dhcp4conn

var _ prometheus.Collector = &collector{}

// A collector gathers connection metrics.

type collector struct {

ReadBytesTotal *prometheus.Desc

ReadPacketsTotal *prometheus.Desc

WriteBytesTotal *prometheus.Desc

WritePacketsTotal *prometheus.Desc

}

Implements the net.conn interface
and allows us to process ethernet
frames for validation and other
purposes.

DHCP: custom conn collector

digitalocean.com

DHCP: goroutine worker pools

digitalocean.com

workC := make(chan request, Workers)

for i := 0; i < Workers; i++ {

go func() {

defer workWG.Done()

for r := range workC {

s.serve(r.buf, r.from)

}

}()

}

Uses buffered channel to process
requests, limiting goroutines and
resource usage.

DHCP: rate limiter collector

digitalocean.com

type RateMap struct {
mu sync.Mutex
...
rateMap map[string]*rate

}

type RateMapCollector struct {
RequestRate *prometheus.Desc
rm *RateMap
buckets []float64

}

func (r *RateMapCollector) Collect(ch chan<- prometheus.Metric) {
…
ch <- prometheus.MustNewConstHistogram(

r.RequestRate,
count, sum,
rateCount)

}

ratemap calculates the exponentially
weighted moving average on a per-client
basis and limits requests

collector gives us a snapshot of rate
distributions

DHCP: rate alerts

digitalocean.com

Rate Limiter
Centralized

LoggingCentralized
LoggingCentralized

LoggingCentralized
Logging Elastalert

emits log line

DHCP: the final result

digitalocean.com

digitalocean.com

product #2: VPC

digitalocean.com

product #2: VPC

digitalocean.com

VPC: load-testing

load tester repeatedly makes some RPC calls

digitalocean.com

VPC: latency issues (1)

as load testing continued, started to notice
latency in different rpc calls

digitalocean.com

VPC: latency issues (2)

use tracing to take a look
at the /SyncInitialChassis
call

digitalocean.com

VPC: latency issues (3)

Note that spans for some
traces were being dropped.
Slowing down the load tester,
however, eventually
ameliorated that problem.

digitalocean.com

VPC: latency issues (4)

“The fix was to be smarter
and do the queries more
efficiently. The repetitive
loop of queries to rnsdb
really stood out in the
lightstep data.”

- Bob Salmi

digitalocean.com

VPC: remove component

can queue be replaced with simple request-response system?

source: https://programmingisterrible.com/post/162346490883/how-do-you-cut-a-monolith-in-half

digitalocean.com

VPC: chaos testing

Induce south service failure
and see how rabbit
responds

Drop primary and
recovery from
secondary

Induce northd failure
and ensure failover
works

digitalocean.com

VPC: add alerts (1)

state-based
alerts

digitalocean.com

VPC: add alerts (2)

threshold alert

digitalocean.com

conclusion

digitalocean.com

what?
four golden signals, USE metrics

when?
as early as possible

how?
combine with profiling, logging, tracing

thanks!

@snehainguva

