
1

Resource Saturation Monitoring and
Capacity Planning on GitLab.com

Andrew Newdigate, GitLab

2

Introduction

Andrew Newdigate

Scalability Team, Infrastructure Group, GitLab

@suprememoocow

gitlab.com/andrewn

3

Resource Saturation in Software Systems

Resource Saturation
Incident RCA:
GitLab.com Redis CPU
Saturation

Resource Saturation

https://gitlab.com/gitlab-com/gl-infra/production/issues/928
https://gitlab.com/gitlab-com/gl-infra/infrastructure/issues/7157

4https://dashboards.gitlab.com/d/web-main?panelId=30&fullscreen

Resource Saturation in Software SystemsGitLab.com Web Performance (Apdex Score)

Percentage requests completed within threshold. Higher is better

SLO
Threshold

5

Resource Saturation in Software Systems

Redis Cache CPU Saturation

● Redis server is single-threaded

● Redis running on 4 core servers, 3 of the cores ~idle at any time

● Redis cache operations queuing, leading to slow down across

multiple systems that relied on the cache

GitLab.com Redis Degradation

6

Resource Saturation in Software Systems

Cause?

● No single application change which obviously caused the problem

● No recent infrastructure changes

● No unusual user activity (eg, abuse, DDOS, etc)

GitLab.com Redis Degradation

Example: Redis CPU Saturation, May - Mid July

Everything
is on fire!

Everything
is fine!

8

Resource Saturation in Software Systems

Potential Workarounds

● Faster CPUs

● Shard Redis cache

● Move to Redis Cluster

● Fixed several (old) inefficient caching

operations

Potential Fixes for Redis CPU Saturation

Learnings

1. Symptom-based alerting only warned us once it was too late

2. Resolving saturation problems may require time

3. Forewarning of the trend towards saturation would have helped a lot

We need better capacity planning. Can we use Prometheus for this?

Takeaways

Failure is not Linear

Goals
1. Model saturation as a key metric for each of our services

2. Model every potential saturation point in the application

3. Provide a forecast of resources that are most likely to breach their saturation

limits in the next few weeks, giving us time to address these issues before

they breach

Capacity Planning Goals

Saturation = Current Resource Usage
Maximum Possible Resource Usage

Modeling Saturation

0: “Not Saturated” “Completely Saturated”: 1

Setup a recording rule with two fixed dimensions (labels)

service_component:saturation:ratio

Two Fixed Dimensions/Labels

● “service” the service reporting the resource
eg service="web” or service="postgres”

● “component” dimension - the component resource we are measuring
eg component="memory” or component="cpu”

All series report a ratio between 0 and 1. 0 is 0% (good). 1 = 100% Saturated
(bad)

Saturation Measurement Recording Rules

saturation_fds = process_open_fds / process_max_fds

Example: File Descriptors

Saturation = Current Resource Usage
Maximum Possible Resource Usage

Example: File Descriptors

saturation_fds =

max by (service) (

 process_open_fds / process_max_fds

)

Example: File Descriptors

Example: File Descriptors

 - record: service_component:saturation:ratio
 labels:
 component: 'open_fds'
 expr: >
 max by (service) (
 process_open_fds
 /
 process_max_fds
)

job_component:saturation:ratio{component="open_fds", service="gitaly"} 0.238
job_component:saturation:ratio{component="open_fds", service="web"} 0.054

File Descriptor Saturation Example

 - record: service_component:saturation:ratio
 labels:
 component: 'redis_cpu'
 expr: >
 max by (service) (
 rate(redis_cpu_user_seconds_total[1m])
 +
 rate(redis_cpu_sys_seconds_total[1m])
)

service_component:saturation:ratio{component="redis_cpu", service="redis-cache"} 0.451
service_component:saturation:ratio{component="redis_cpu", service="redis-sidekiq"} 0.324

Redis CPU Saturation

 - record: service_component:saturation:ratio
 labels:
 component: 'pg_connections'
 expr: >
 max by (service) (

sum without (state, datname) (
 pg_stat_activity_count{state!="idle"}
)
 /
 pg_settings_max_connections
)

service_component:saturation:ratio{component="pg_connections", service="postgres-1"} 0.2
service_component:saturation:ratio{component="pg_connections", service="postgres-2"} 0.67

Postgres Connection Saturation Example

Server Workers: unicorn worker processes, puma threads, sidekiq worker

Disk: disk space, disk throughput, disk IOPs

CPU: compute utilization across all nodes in a service, most saturated node

Memory: node memory, cgroup memory

Database Pools: postgres connections, redis connections, pgbouncer pools

Cloud: Cloud quota limits (work-in-progress...)

Other examples of saturation metrics

- alert: SaturationOutOfBounds

 expr: service_component:saturation:ratio > 0.95

 for: 5m

 annotations:

 title: |

 The `{{ $labels.service }}` service,

 `{{ $labels.component }}` component

 has a saturation exceeding 95%

Generalised alert for all saturation metrics

Slackline

Alert details

Embedded
Grafana
panel

Threaded
resolve
message w/
embedded
panel

Quick links
+ quick
actions

Capacity Planning and Forecasting

Can we use Linear Interpolation?

Linear interpolation doesn’t work well on non-linear data

A hurricane warning, not a weather forecast...

Then an idea struck us...

Estimating a worst-case with standard deviation

Estimated Worst Case Prediction Calculation:

1. Trend Forecast: Use linear prediction on our rolling 7 day average to extend

the trend forward by 2 weeks

2. Standard Deviation (σ): Calculate the standard deviation for each metric for

the past week

3. Worst Case: 2w Trend Prediction + 2σ

Estimating a worst-case with standard deviation

Saturation Metric: Redis CPU

Estimating a worst-case with standard deviation

Redis CPU Trend: 7-day Rolling Average

Estimating a worst-case with standard deviation

Linear Interpolate on the Trend

Estimating a worst-case with standard deviation

Account for variance by adding 2σ

Worst-Case Predictions in PromQL

 # Average values for each component, over a week

 - record: service_component:saturation:ratio:avg_over_time_1w

 expr: >

 avg_over_time(service_component:saturation:ratio[1w])

 # Stddev for each resource saturation component, over a week

 - record: service_component:saturation:ratio:stddev_over_time_1w

 expr: >

 stddev_over_time(service_component:saturation:ratio[1w])

 - record: service_component:saturation:ratio:predict_linear_2w

 expr: >

 predict_linear(

 service_component:saturation:ratio:avg_over_time_1w[1w],

 86400 * 14 # 14 days, in seconds

)

Worst-Case Predictions in PromQL

Capacity Planning Report

https://dashboards.gitlab.com/d/general-capacity-planning

Not looking
good right
now

Not looking
good in the
short term...

Not looking
good over the
next few weeks

Future Improvement? Better Predictions

Calculate the predictions outside Prometheus?

Example: using
python/numpy to perform
Monte-Carlo simulations to
predict saturation.

Overkill much?

Conclusion

Capacity Planning Dashboard:

● Reports on potential future saturation problems based on week-on-week

growth trends and volatility in our data

● Used for further, deeper analysis and planning - we don’t alert based on

this data

● Early days - still figuring this out. Would love to get feedback!

Questions?

Andrew Newdigate | @suprememoocow

GitLab.com Resource Saturation Monitoring and Capacity Planning rules at:

Saturation Metrics
https://gitlab.com/gitlab-com/runbooks/blob/master/rules/service_saturation.yml

Saturation Alerts
https://gitlab.com/gitlab-com/runbooks/blob/master/rules/general-service-alerts.yml

Capacity Planning Dashboard (grafonnet examples 🤘)
https://gitlab.com/gitlab-com/runbooks/blob/master/dashboards/general/capacity-planning.jsonnet

We’re hiring!
https://about.gitlab.com/jobs/apply/

Questions?

