
Prometheus in Small and
Medium Businesses

Why You Don't Need to Do Rocket Science
(Kubernetes) to Use It

 Matteo Valentini
@_Amygos

About Nethesis

_Amygos

Nethesis: an example of small medium business
An italian Open Source IT company

~ 30 employees

Creator, main sponsor and contributor of Nethserver, an open source linux
distribution

● https://www.nethserver.org/
● https://community.nethserver.org/

The Nethesis core business is the selling of support to their resellers, on
Nethesis's products based on Nethserver distribution.

https://www.nethserver.org/
https://community.nethserver.org/

_Amygos

Nethesis: why adopt Prometheus?
● Not happy with old solution based on Nagios/Adagios
● Launch of a new service based on the immutable infrastructure paradigm
● Try a new thing :)

_Amygos

Nethesis: the initial monitoring scenario
16 static host to monitor:

● System metrics
● CPU/RAM alerts
● UP/DOWN alerts
● Response latency of some service

1 Dynamic system

The infrastructure

_Amygos

Infra: VM Istance
● Hosted in house
● Proxmox Virtual Environment
● Single node instance

○ Centos 7
○ 40 Gb disk
○ 1 Gb ram
○ 1 vCPU

● Service installed:
○ Prometheus
○ Grafana
○ AlertManager
○ Blackbox exporter

_Amygos

Infra: provisioning
● Provisioned using Ansible

○ Most of the roles came from Cloudalchemy

● Versioning using git
● Manual apply of ansible playbook

_Amygos

Infra: exporters configuration
● Provisioned with Ansible
● Access policy based on source IP (from our assigned IP range)

○ Cloud firewals
○ iptables ruels

Prometheus configuration

_Amygos

Prometheus: labeling
prometheus_targets:

 node:

- targets:

 - "mail.example.com:9100"

 labels:

 env: production

 system: eshop

 service: mail

 server: c1

_Amygos

Prometheus: alert rules
Basic alert rules:
● Cpu Load
● Memory usage
● Disk usage
● HTTPS certificate expiration

The alerts are labeled based on severity:
● Information
● Warning
● Critical

_Amygos

Alertmanager: alerting strategy
alertmanager_child_routes:

 - match:

 severity: warning

receiver: warning

 - match:

 severity: critical

receiver: critical

alertmanager_inhibit_rules:

 - target_match:

 severity: warning

 source_match:

 severity: critical

 equal: ['alertname', 'instance',

'target']

_Amygos

Alertmanager: receivers
alertmanager_receivers:

 - name: warning

slack_configs:

 - send_resolved: true

 channel: '#prometheus-alerts'

 - name: critical

slack_configs:

 - send_resolved: true

 channel: '#prometheus-alerts'

email_configs:

 - send_resolved: true

 to: "infra-alerts@example.com"

webhook_configs: #Telegram channel

 - send_resolved: true

 url: http://127.0.0.1:9087/alert/-001234567890

Benefits of Prometheus

_Amygos

Visibility
All configurations, of the stack, are stored in a git repository:

● Everyone that have access to the repository can view the configurations
● Pull request workflow for proposed modifications
● Versioning of the changes

Grafana can use LDAP as auth backend:

● Everyone with an account can access to the dashboards,

_Amygos

Local development: Vagrant
Thanks to the pull nature of Prometheus, almost every developer can locally
reproduce the production environment:

1. Clone the repository
2. Use the Vagrantfile present in the in the repository to create e provisio a local

instance
3. Experimenting and testing
4. Make a pull request with the changes

_Amygos

Social aspects

Cross companies remote debugging

_Amygos

The problem
One software, a big Java application, that we integrare in Netserver distribution,
start to have some problems:

● Some Memory/Resource leak
● Not reproducible
● Not present in all installations

But lucky (or unlucky) the problems was presents in our local production
installation

_Amygos

The solution
Thanks to Prometheus and Grafana stack the steps were pretty straightforward:

1. Install the JMX Exporter and configure it in the Prometheus’s targets
2. Install the JMX Overview Grafana dashboard
3. Create the users in Grafana for the external developer team.
4. As plus, create a new Mattermost team for discussion and invite the external

developers.
5. Have fun! (start debugging)

_Amygos

Custom panel

_Amygos

Grafana alerts

Beyond the metrics

_Amygos

The demo case
We have started to offer to our potential customer a Instance with our products
installed as an evaluation demo, the instance must be valid for 30 days.

How can keep track of the expired instances?

1. Install the DigitalOcean exporter
a. Actually fork it and patch it for export the Droplet creation date as metric

2. Create the Ansible role for the setup
3. Configure an alert that when the expiration date is meet, an email will be

sended to the sales department.

So Prometheus was also used by the sales :)

Conclusions

_Amygos

We have found Prometheus useful?
YES! :) We have found useful uses of Prometheus in many aspects of the
company

● Operations
● Development
● Sales

_Amygos

Recommendations
1. Start simple
2. Use Prometheus stack as base
3. Make incremental steps
4. Don't overengineering

Questions?

Thanks for listening!
Who I am?

Matteo Valentini

Developer @ Nethesis (mostly Infrastrutture Developer)

 Amygos

 @_Amygos

 amygos@paranoici.org

