
&

Two Households,
Both Alike in Dignity

Bartłomiej Płotka & Tom Wilkie
PromCon 2019

Started by Tom Wilkie and Julius Volz in June
2016

Joined CNCF sandbox Sept 2018

https://github.com/cortexproject/cortex

Started by Fabian Reinartz and Bartłomiej
Płotka on Dec 2017

Joined CNCF sandbox in Aug 2019

https://thanos.io

https://github.com/cortexproject/cortex

When monitoring a global fleet with Prometheus, I need...

1. Global View

2. Multi-Replica Prometheus (HA)

3. Long Term Storage

#1 Global View
Queries over data from multiple Prometheus servers

Thanos: Fanout Queries

#1 Prometheus in
each remote cluster
has Thanos sidecar.

#2 Stateless Querier
anywhere fanouts

query to certain
Prometheuses.

#3 Queries see all
data.

us-west

us-east

eu-west

pull

Cortex: Centralised Data

#1 Prometheus in
separate clusters

remote writes
metrics.

#2 Scalable Cortex
cluster stores metrics

from multiple
Prometheus servers.

#3 Queries go to
central cluster, cover

all data.

us-west

us-east

eu-west

push

#1 Global View
Data stays in Prometheus;

Fanout query;

Centrally write data to a
scalable Cortex cluster;

query in one place.

#2 Multi-Replica Prometheus (HA)
No gaps in the graphs caused by Prometheus server restarts

Thanos: Query time deduplication

#1 Each Prometheus
replica scraping the

same targets has
Thanos sidecar.

#2 Thanos Querier
resolve gaps in query

time.

#3 Queries only ever
see a single version of

each series.

us-west-a

us-west-b

Cortex: Resolve Gaps at Write Time

#1 Both Prometheus
instances in each

cluster remote-write
metrics to Cortex.

#2 Cortex dedupes
samples on ingestion,

only storing data from a
single Prometheus.

#3 Queries only ever
see a single version of

each series.

us-west-a

us-west-b

#1 Global View
Data stays in Prometheus;

Fanout query;

Centrally write data to a
scalable Cortex cluster;

query in one place.

#2 Multi-Replica
Prometheus (HA)

Resolve gaps at query time;
only renders single series

Resolve gaps at write time;
only store single series.

#3 Long Term Storage
Store data for long term analysis

#1 Sidecar syncs
TSDB blocks with

Object Storage

Thanos: TSDB blocks in object store

#2 Thanos allows browsing uploaded
blocks, compacting index and

downsampling

#3 Queriers have
access to both fresh

and old data

Cortex: NOSQL index & chunks

#1 Samples from
Prometheus are

batched up into XOR
Chunks in Cortex.

#2 Chunks are periodically flushed to an
object store, and an inverted index over the

chunks is written to a NOSQL database.

#3 Queries use the
index in NOSQL to

find relevant chunks,
with heavy use of

caches.

#1 Global View
Data stays in Prometheus;

Fanout query;

Centrally write data to a
scalable Cortex cluster;

query in one place.

#2 Multi-Replica
Prometheus (HA)

Resolve gaps at query time;
only renders single series

Resolve gaps in write time;
only store single series.

#3 Long Term Storage
TSDB blocks in object

storage
NOSQL for index & chunks

in object storage

Future

Increased Collaboration (I)

Cortex query-frontend can be put in front of
Thanos to accelerate queries using

parallelisation and caching.

https://grafana.com/blog/2019/09/19/how-to-get-blazin-fast-promql/

https://grafana.com/blog/2019/09/19/how-to-get-blazin-fast-promql/

Increased Collaboration (II)

Cortex now embeds Thanos’s
code to read & write blocks from

object store for LTS, reduced
dependencies and TCO.

https://github.com/cortexproject/cortex/pull/1695

https://github.com/cortexproject/cortex/pull/1695

Thanks!
Questions?

https://thanos.io

https://github.com/cortexproject/cortex

https://github.com/cortexproject/cortex

